Spaces of Infinite Measure and Pointwise Convergence of the Bilinear Hilbert and Ergodic Averages Defined by L-Isometries

نویسندگان

  • Earl Berkson
  • Ciprian Demeter
چکیده

We generalize the respective “double recurrence” results of Bourgain and of the second author, which established for pairs of L∞ functions on a finite measure space the a.e. convergence of the discrete bilinear ergodic averages and of the discrete bilinear Hilbert averages defined by invertible measure-preserving point transformations. Our generalizations are set in the context of arbitrary sigma-finite measure spaces and take the form of a.e. convergence of such discrete averages, as well as of their continuous variable counterparts, when these averages are defined by Lebesgue space isometries and act on Lp1 × Lp2 (1 < p1, p2 < ∞, p −1 1 + p 2 < 3/2). In the setting of an arbitrary measure space, this yields the a.e. convergence of these discrete bilinear averages when they act on Lp1 × Lp2 and are defined by an invertible measure-preserving point transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Two Dimensional Bilinear Hilbert Transform

We investigate the Bilinear Hilbert Transform in the plane and the pointwise convergence of bilinear averages in Ergodic theory, arising from Z actions. Our techniques combine novel one and a half dimensional phase-space analysis with more standard one dimensional theory.

متن کامل

Pointwise Convergence of the Ergodic Bilinear Hilbert Transform

Let X = (X,Σ,m, τ) be a dynamical system. We prove that the bilinear series ∑ ′N n=−N f(τnx)g(τ−nx) n converges almost everywhere for each f, g ∈ L(X). We also give a proof along the same lines of Bourgain’s analog result for averages.

متن کامل

ON THE TWO-DIMENSIONAL BILINEAR HILBERT TRANSFORM By CIPRIAN DEMETER and CHRISTOPH THIELE

We investigate the Bilinear Hilbert Transform in the plane and the pointwise convergence of bilinear averages in Ergodic theory, arising from Z2 actions. Our techniques combine novel one and a half-dimensional phase-space analysis with more standard one-dimensional theory.

متن کامل

On the Two Dimensional Bilinear Hilbert Transform Ciprian Demeter and Christoph Thiele

We investigate the Bilinear Hilbert Transform in the plane and the pointwise convergence of bilinear averages in Ergodic theory, arising from Z actions. Our techniques combine novel one and a half dimensional phase-space analysis with more standard one dimensional theory.

متن کامل

An iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces

begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008